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1 Static Nash Equilibrium

Assume that ψi
(
q;m, p

)
depends only on pair-wise price differences; this property

can be derived from a consumer choice model with quasi-linear preferences in money.

It implies that for all prices:

ψi
(
q;m, p

)
= ψi

(
q;m, p+ ∆1n

)
(1)

where 1n is a vector of ones of length n. Also, assume that the FOC is suffi cient to

characterize a unique equilibrium for any symmetric cost structure. Let ψi
(
m, p

)
denote the corresponding vector specifying the probabilities over different quantities

qi ∈ {0, ...m} for player i.
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Lemma 1 The equilibrium path-through of an increase in marginal costs to prices is

100%. That is, if all marginal costs increase by ∆, then the Nash equilibrium prices

increase by ∆.

Proof. Firm i’s best response problem to set price pNi (ci) to other firms setting

prices pN−i is:

pNi (ci) ∈ arg max
pi

m∑
m=m

ρ (m) (pi − ci)
(
qi · ψi

(
m, pN1 , . . . , pi, . . . , p

N
m

))
.

where qi is a vector (0, 1, ...m) and "·” is a dot product. The FOC of this problem is

m∑
m=m

ρ (m)

[(
qi · ψi

(
m, pN

)
+ (pi − ci) qi ·

∂ψi
(
m, pN

)
∂pi

)]
= 0

Suppose it is satisfied at pN (c) . Consider costs c+ ∆ and evaluate the FOC at prices

pN (c) + ∆1n:

m∑
m=m

ρ (m)

[(
qi · ψi

(
m, pN + ∆1n

)
+ ((pi + ∆)− (ci + ∆)) qi ·

∂ψi
(
m, pN + ∆1n

)
∂pi

)]

=

m∑
m=m

ρ (m)

[(
qi · ψi

(
m, pN

)
+ (pi − ci) qi ·

∂ψi
(
m, pN

)
∂pi

)]
= 0

where we used (1) to simplify. Hence, the FOC holds at these prices.

100% pass-through implies that pN (c) = c + const. Finally, note that the above

lemma holds even if costs are asymmetric: when firms have a vector of marginal costs

c then pN (c+ ∆1n) = pN (c) + ∆1n.

2 Collusive Scheme without Condition (1)

Suppose there are two firms and m ∈ {m, ...,m} with m > 0 and even. Moreover,

ρ (m) = 1−ε and ρ (m) = ρ̂ (m) ε form > m, where ρ̂ (m) is a probability distribution

over m conditional on m > m, which is positive for all m < m ≤ m. We allow m to

be high enough so that condition (1) from the paper is violated. In words, the belief
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is that the total demand is m = m with a very high probability, but there is a right

tail of high demand realizations which could be quite long.

Consider the following collusive scheme: at the end of each period, both firms

report simultaneously their sales, (r1, r2) . If the sum of reports is less than m, then

firms move to a punishment phase. (Note the punishment does not then happen on

the equilibrium path). If the sum of reports is at least m, then if a firm sold less than

m/2, it receives a payment z from the other firm for every unit below m/2. In other

words, each firm is promised to sell at least m/2 units and for all sales below m/2 it

is compensated with a transfer z from the other firm.

To keep the formulas simple, we describe the pricing stage of the scheme for

m = 100 (so that each firm is promised to sell at least 50 units), but it should be

clear that the scheme works for a general m.With such a scheme, in the price-setting

stage firms maximize:

max
pi

ρ (100) [
100∑
qi=0

((pi − c) qi + (50− qi) z)ψi
(
qi,m, p

)
]

+
m∑

m=101

ρ (m)


∑50

qi=0
((pi − c) qi + (50− qi) z)ψi

(
qi,m, p

)
+
∑m−50

qi=51
((pi − c) qi)ψi

(
qi,m, p

)
+
∑m

qi=m−49 ((pi − c) qi + (m− 50− qi) z)ψi
(
qi,m, p

)


where in the second summation, the first term corresponds to firm i being below its

quota, the second term to both firms meeting their quota, and the last term to firm

−i being below its quota. This objective can be re-written as:

max
pi

ρ (100) [

100∑
qi=0

((pi − (c+ z)) qi)ψi
(
qi, 100, p

)
+ 50z]

+

m∑
m=101

ρ (m)


∑50

qi=0
((pi − (c+ z)) qi + 50z)ψi

(
qi,m, p

)
+
∑m−50

qi=51
((pi − c) qi)ψi

(
qi,m, p

)
+
∑m

qi=m−49 ((pi − (c+ z)) qi + (m− 50) z)ψi
(
qi,m, p

)

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which means that conditional on m = 100 the profit is as if marginal cost was c + z

rather than c, while the profit expression is more complicated when m > 100. Yet,

as in the case of the lysine strategy, in the price-setting stage we can analyze prices

using this modified static game. Suppose that for every z this static game has a

unique Nash equilibrium, that is continuous in ε and z. Let pN (z, ε) be that price.

By continuity, for small ε, pN (z, ε) is close to pN (z, 0) . Assume that pN (z, 0) is

strictly and increasing in z without bound (this is our assumption A4). 1 Under

these assumptions on pN (z, ε), for any price p̂ it is possible to find ε̄ > 0 small

enough such that for all ε ≤ ε̄ we can find a z so that in the pricing stage the firms

would set a symmetric price of p̂.

Now consider the reporting stage. If a firm sells qi units it can affect its transfer

only by reporting ri < m/2, since all reports above m/2 do not affect how much it

pays (in that case payment depends on the report of the other firm only).

To show that truthful reporting is incentive compatible, we need to make one

more assumption. For any qi denote by R̃ (qi) the set of the potentially profitable

reports, that is, report ri ∈ R̃ (qi) if it is strictly less than qi and strictly less thanm/2

(ri < 50 in our example). We assume that for every price pi (including off-equilibrium

prices) and any qi, firm i assigns positive probability to the other firm selling qj such

that ri+qj < m for any ri ∈ R̃ (qi) .Moreover, we assume that this belief is uniformly

bounded away from zero by an amount A. In words, we assume that a firm reporting

less than their quota and less than their actual sales, assigns a positive probability

that the other firm sold so few units that this will make the sum of reports less than

m, which clearly indicates a deviation. A suffi cient condition for this assumption to

hold is: a) if a firm sells qi < m, it assigns a positive probability to m = m; b) if a

1Alternatively, one could assume that pN (z, ε) is increasing in z for any ε, but that is more

diffi cult to verify than pN (z, 0) is increasing since pN (z, 0) corresponds to a static Nash equilbrium

of a much simpler game. Also, while it is natural to expect that pN (z, ε) is increasing in z for a

small ε (because the main effect of z on the static game is analogous to changes in c), for a large ε

the impact of z is complex and we do not know how restrictive that assumption would be.
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firm sells qi > m, it assigns a positive probability to the other firm selling less than
m
2
.

Next, suppose that if r1 + r2 < m then the collusive mechanism will trigger a

mutual destruction of value X which is at least:

50z

A
< X

With that punishment, firm i will not find it profitable to report ri < qi because the

gain is bounded from above by 50z and the loss is bounded from below by AX. The

same punishment can be used to deter firms from reneging on payments.

In the dynamic game, we can implement the punishment by a threat of infinite

reversion to a stage game Nash equilibrium. Since the collusive scheme increases

prices from pN (0, ε) to p̂, the Nash reversion corresponds to:

X =
δ

1− δ
(
p̂− pN (0, ε)

) µ
2

Hence for any p̂ > pN (0, ε) (and ε ≤ ε̄), for δ suffi ciently close to one, no firm would

find it profitable to under-report sales.

This construction gives us a semi-public perfect collusive equilibrium. Firms start

in a collusive state and are recommended to set prices (p̂, p̂). After every period they

simultaneously report their sales. If the reports add up to at least m then any firm

with sales below m
2
is compensated by the other firm with a transfer of z per unit

of shortfall. If payments are made, we move to the next period. If in any period

reports do not add up to at least m or a firm reneges on payments, we switch to the

punishment state in which we play the static Nash equilibrium forever.

Note that this scheme does not respond to firms over-reporting sales because these

IC reporting incentives are slack. If a firm sells qi ≥ 50 then over-reporting does not

change the payoffs at all. If a firm sells qi < 50 then over-reporting reduces the

transfer received without any compensating benefit because on the path there are

no punishments for low aggregate sales reports, which is different from the lysine

strategy.

5



This scheme has the desirable property that it allows firms to collude using only

balanced transfers and value burning that occurs only as an off-equilibrium threat

(yet, a credible one), a stark contrast with the lysine strategy we described. It is

an open question for which demand structures it is possible to construct collusive

equilibria that do not use value burning on the equilibrium path. The example in the

next section illustrates for some demand structures that it is a part of the optimal

mechanism (and in case m ∈ {0, 1} one can show that it is necessary for any collusive

scheme). These examples suggest a conjecture that value burning is necessary if (and

possibly only if) m = 0 is assigned a positive probability. Finally, the considerations

of value burning and incentives for over-reporting it can trigger, suggest that having

long right tail in the distribution of m is much easier to handle for the cartel than

having a long left tail.

3 Optimal Mechanism for the Two Unit Demand

Case

3.1 Model

In this section we study a model with two firms, m ∈ {0, 1, 2} and a simple demand

structure. We first consider a static model in which firms can design a mechanism

specifying transfers and value destruction as a function of reported sales. The payoffs

from that mechanism imply an upper bound on equilibrium payoffs in any semi-

public equilibrium in which players report sales without delay. We then show that

if players are suffi ciently patient that upper bound is achievable. Interestingly, the

optimal equilibria mimic the lysine strategy that we constructed for the general case.

Although the lysine strategy is unlikely to be optimal in general, we find it informative

to see that the same two main instruments are used in the optimal equilibria as in

our lysine strategy: transfers from players with higher sales to players with low sales
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and the threat of destruction of value in case total reports are low.

Taking a mechanism design approach, we focus on a highly simplified duopoly

case.2 Nature chooses the number of active buyers from the set {0, 1, 2} where ρm ≡

ρ (m) is the probability that demand is m ∈ {0, 1, 2} . Each active buyer buys one

unit of output. If an active buyer is offered prices p1 and p2 then she buys from firm

1 with probability ξ (p2 − p1) and from firm 2 with probability 1− ξ (p2 − p1); thus,

the probability of purchase decisions depends only on the price difference. Buyers’

purchase decisions are independent.

It is assumed ξ is a differentiable, increasing function and ξ (0) = 1/2. Further-

more, we assume that ξ is such that, given the scheme we construct, the FOC of the

price-setting problem is suffi cient for optimality.3 Using ξ and the independence of

consumer choices we get:

ψ (1; 1, p1, p2) = ξ (p2 − p1)

ψ (2; 2, p1, p2) = ξ (p2 − p1)2

ψ (1; 2, p1, p2) = 2ξ (p2 − p1) [1− ξ (p2 − p1)] .

ψ (0; 2, p1, p2) = [1− ξ (p2 − p1)]2

Reports are restricted so that ri ∈ {0, 1, 2} . ηi,j (p1, p2) will denote the probability

that q2 = j given q1 = i and firms’prices, and ψ (q1;m, p1, p2) is the probability of

firm 1 having sales of q1 given total demand is m and given firms’prices.

3.2 Characterization of an Optimal Mechanism

A collusive mechanism consists of a recommended price pair (p1, p2) and a transfer

rule that depends on reported sales. A transfer rule {t1 (r1, r2), t2 (r2, r1)} specifies

net transfers received by the two players conditional on the reports. The mechanism

2With some additional notation, we believe results can be extended in a straightforward manner

to when there are n firms.
3See footnote 5 for discussion of suffi cient conditions.
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is feasible if

t1 (r1, r2) + t2 (r2, r1) ≤ 0,∀ (r1, r2) . (2)

Moreover, we restrict the transfers to be bounded:

t1 (r1, r2) , t2 (r2, r1) ∈ [−x, x] , ∀ (r1, r2) , (3)

where x > 0. Restriction (3) may be needed for the existence of an optimal mecha-

nism because total demand is inelastic. If bigger inter-firm transfers are more likely

to trigger an investigation by the antitrust authorities, cartel members may want to

put a bound on those transfers. Thus, the technical assumption in (3) may have an

economic rationale as well.4 The mechanism is incentive compatible if both firms

find it optimal to set the recommended prices and report their realized sales truth-

fully (incentive compatibility requires truthful reporting if a firm follows the price

recommendation but not otherwise).

A collusive mechanism is symmetric if t1 (r1, r2) = t2 (r2, r1) = t (r1, r2) and p1 =

p2 = p̂. Our goal is to describe an optimal symmetric incentive compatible feasible

collusive mechanism.

Anticipating that both firms will truthfully report their sales, firm 1’s expected

payoff at the price stage is:

ρ0t (0, 0) + ρ1 [ψ (1; 1) (p1 − c+ t (1, 0)) + (1− ψ (1; 1)) t (0, 1)] (4)

+ρ2[ψ (2; 2) (2 (p1 − c) + t (2, 0)) + ψ (1; 2) (p1 − c+ t (1, 1)) + (ψ (0; 2)) t (0, 2)],

where we have suppressed the dependence of ψ (·) on firms’prices. The FOC for price
4When we use the optimal mechanism to construct equilibria in the repeated game, a natural

constraint on x comes from the incentive constraints that players may renege on payments.
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(assuming truthful reporting) gives us the symmetric equilibrium price p̂:5

0 = ρ1

{
∂ψ (1; 1)

∂p1
[p̂− c+ t (1, 0)− t (0, 1)] +

1

2

}
(5)

+ρ2

{
∂ψ (2; 2)

∂p1
[2 (p̂− c) + t (2, 0)] + 2ψ (2; 2)

+
∂ψ (1; 2)

∂p1
[p̂− c+ t (1, 1)] + ψ (1; 2) +

∂ (ψ (0; 2))

∂p1
t (0, 2)

}
.

Using our assumptions on ψ, this can be simplified to

0 = ρ1

{
−ξ′ (0) [p̂− c+ t (1, 0)− t (0, 1)] +

1

2

}
(6)

+ρ2 {−ξ′ (0) [2 (p̂− c) + t (2, 0)− t (0, 2)] + 1} .

Solving it, the symmetric equilibrium price is:

p̂ = c+
1

2ξ′ (0)
+

ρ1
ρ1 + 2ρ2

[t (0, 1)− t (1, 0)] +
ρ2

ρ1 + 2ρ2
[t (0, 2)− t (2, 0)] . (7)

When t (0, 1) − t (1, 0) is higher, a firm benefits more from being the firm with zero

demand when market demand is one. There is then an incentive for a firm to raise

price and that is why the equilibrium price is increasing in t (0, 1)− t (1, 0). A similar

logic explains why the equilibrium price is increasing in t (0, 2)− t (2, 0).

Let us consider the incentive compatibility constraints (ICCs) in the reporting

stage. Suppose q1 = 2, in which case firm 1 knows that firm 2 sold zero units. The

ICC for truthful reporting is

t (2, 0) ≥ t (1, 0) , t (0, 0) . (8)

5Suffi cient conditions for the equilibrium price to be defined by the FOC is that ξ is linear when

it achieves values in (0, 1) and transfers are not too large. When ξ is linear, it is straightforward to

show that the SOC is

−2ξ′ (p2 − p1)
{
ρ1 + 2ρ2 + ρ2ξ

′ (p2 − p1) [2t (1, 1)− t (2, 0)− t (0, 2)]
}
< 0.

Since ξ′ (p2 − p1) > 0, then the SOC is satisfied as long as

t (2, 0) + t (0, 2)− 2t (1, 1) ≥ 0,

or it is suffi ciently close to zero. This expression will equal zero for the optimal mechanism.
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When q1 = 1, the ICCs for truthful reporting are

η1,1 (p1, p̂) t (1, 1)+
(
1− η1,1 (p1, p̂)

)
t (1, 0) ≥ η1,1 (p1, p̂) t (2, 1)+

(
1− η1,1 (p1, p̂)

)
t (2, 0)

(9)

η1,1 (p1, p̂) t (1, 1)+
(
1− η1,1 (p1, p̂)

)
t (1, 0) ≥ η1,1 (p1, p̂) t (0, 1)+

(
1− η1,1 (p1, p̂)

)
t (0, 0)

(10)

η1,1 (p1, p̂) is the probability that firm 1 assigns to firm 2 selling one unit, given firm

1 sold one unit and the price pair. By (9), firm 1 prefers to report having sold one

unit than reporting two units; and by (10), firm 1 prefers to report having sold one

unit than reporting zero units. It is necessary for the mechanism to be incentive

compatible that (9) and (10) hold at p1 = p̂. However, that is not suffi cient, since

the firm may have a profitable "double-deviation"; that is, deviating with price and

report. In our construction in the proof of Theorem 3, we use only these necessary

conditions and then verify that the firm has no incentive to misreport even if it

deviates in price as well.

Finally, when q1 = 0, the ICCs are

η0,2 (p1, p̂) t (0, 2) + η0,1 (p1, p̂) t (0, 1) (11)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (0, 0)

≥ η0,2 (p1, p̂) t (1, 2) + η0,1 (p1, p̂) t (1, 1)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (1, 0)

η0,2 (p1, p̂) t (0, 2) + η0,1 (p1, p̂) t (0, 1) (12)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (0, 0)

≥ η0,2 (p1, p̂) t (2, 2) + η0,1 (p1, p̂) t (2, 1)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (2, 0)

(again it is necessary that these hold for p1 = p̂, and suffi cient if they hold for all p1).

Substituting (7) into the expected payoff in (4), the (relaxed) problem is to choose
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a transfer function t (·) to maximize

ρ0t (0, 0) + (ρ1/2) [t (1, 0) + t (0, 1)] (13)

+

(
1− ρ0 − ρ1

4

)
[t (2, 0) + 2t (1, 1) + t (0, 2)]

+

(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+
(ρ1

2

)
[t (0, 1)− t (1, 0)] +

(
1− ρ0 − ρ1

2

)
[t (0, 2)− t (2, 0)]

subject to the feasibility constraints (2)-(3) and the ICCs (8)-(12). The proof of

Theorem 3 is

provided at the end of the appendix.

Theorem 3: Under the assumptions of Section 5, if the high demand state is most

likely (ρ2 > ρ0, ρ1), an optimal symmetric mechanism is:

t (0, 0) = −x

t (0, 1) = 0, t (1, 0) = −x

t (0, 2) = x, t (2, 0) = −x

t (1, 1) = 0

t (r1, r2) = −x if r1 + r2 > 2

and the resulting expected firm payoff is:(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ (ρ2 − ρ0)x.

If the low demand state is most likely (ρ0 > ρ1, ρ2), there does not exist any

symmetric mechanism yielding payoffs in excess of those produced by a stage

game Nash equilibrium.

When the low demand state is most likely, collusion cannot be sustained.6 We

do not have a characterization when the medium demand state is most likely (ρ1 >

6As earlier work on private monitoring suggests, delay in exchanging reports will presumably be

necessary to support collusion when ρ0 > ρ1, ρ2.
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ρ0, ρ2).
7 When the high demand state is most likely, collusion can be sustained and

the optimal mechanism has the following properties. When market demand is two

units and one firm sold both of those units, that firm is required to make a transfer

of x to the firm that sold nothing. When both firms sold one unit, there are no

transfers. When market demand is one unit, the firm having sold that unit incurs a

penalty of x and the other firm receives no payment, so value is destroyed. Finally,

when market demand is zero, both firms incur a penalty of x, and again there is an

ineffi ciency. The remainder of this section will explore this optimal mechanism; thus,

we will be assuming ρ2 > ρ0, ρ1.

This mechanism provides an upper bound on collusive equilibrium payoffs in our

repeated game (where transfers are not contractible so firms must find it optimal

to pay them) for any symmetric semi-public perfect equilibrium with firms reporting

without delays. The reason is that for any such Pareto-effi cient equilibrium, whatever

can be achieved by using continuation payoffs to provide incentives, can be also

achieved in our static mechanism with transfers (which is not necessarily true for

equilibria with delays in reporting). The complication is that in the repeated game

the bound x is endogenous: for a given discount factor, if the collusive scheme calls

for firm i to pay too much (either as a transfer to the other firm or as value burning),

it will prefer to renege since punishments are bounded by the difference between

the best and worst equilibrium payoffs. A different way of bounding x arises if we

assume that the demand is inelastic up to some choke price and drops down to zero

above that price (as we discussed in Section 2 of the paper, this is a more realistic

assumption than the demand being perfectly inelastic for all prices). For p̂ in (7)

not to exceed the choke price it must be that transfers do not exceed some level,

giving us an upper bound on x. Since that bound is independent of δ, it leads to an

upper bound on per-period collusive payoffs that is independent of δ. For example, it

7When ρ1 > ρ0, ρ2, we can characterize an optimal mechanism when a firm deviates in its price

or in its reports, but a mechanism immune to deviating simultaneously in price and report has thus

far alluded us. The diffi culty is in verifying that there are no profitable double deviations.
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means that if m = 0 is the most likely level of market demand, there does not exist

a symmetric semi-public perfect equilibrium without delay with payoffs higher than

the static Nash payoff.

Our use of a static mechanism design approach to bound payoffs in a repeated

game in analogous to what is done in Levin (2003). In Section IV he studies a

principal-agent model in which the agent’s performance is privately observed by the

principal. He describes relational contracts that have the "full performance review"

property, that is contracts in which the principal reports after every period (following

the tradition in repeated games literature we refer to such strategies as semi-public

perfect equilibria without delay). In his setup, requiring full-performance review is

limiting and indeed delaying reports can improve effi ciency - see footnote 22 in Levin

(2003) and the discussion there, as well as Fuchs (2007). In his model value burning is

always necessary to induce both effort and truthful reporting. The critical difference

from our model is that on the agent’s side he has moral hazard only in actions and on

the principal’s side only moral hazard in reports. In our model both moral hazards

are on both sides of the market, which significantly complicates the analysis. A paper

related to this issue is MacLeod (2003), which also studies a principal-agent problem

but he has both the agent and the principal observe private signals of performance.

He shows that if the signals are correlated, effi ciency can be improved. That suggests

that in our game one could exploit the details of the correlation in realized quantities

to improve upon the lysine strategy (the case of m being known or m being bounded

away from zero are extreme cases of such a correlation and we have discussed how

that can be explored).

To finish this section, we show how the optimal static mechanism for a given x can

be implemented as a semi-public perfect equilibrium of an infinitely repeated game

if δ is high enough and m = 2 is the most likely outcome. Define

v ≡
(

2 (1− ρ0)− ρ1
4ξ′ (0)

)
+ (ρ2 − ρ0)x, vN ≡

(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
as the per period expected payoff for the optimal mechanism and the stage Nash
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equilibrium, respectively. When both firms report zero sales, each firm is supposed

to incur a penalty of x. As the foregone value from going to the stage game Nash

equilibrium is
(

δ
1−δ
) (
v − vN

)
, we then want to realize that penalty with a probability

such that the expected foregone value equals t (0, 0). Hence, when (r1, r2) = (0, 0),

the equilibrium shifts to the stage game Nash equilibrium forever with probability α0

which satisfies:

x = α0

(
δ

1− δ

)(
v − vN

)
⇔ α0 =

1− δ
δ (ρ2 − ρ0)

.

If (r1, r2) = (1, 0) then firm 1 is to pay x and firm 2 has a zero transfer. To implement

it, assume firm 1 transfers x/2 to firm 2 and the probability the equilibrium shifts to

stage game Nash forever is α1 which satisfies:

x

2
= α1

(
δ

1− δ

)(
v − vN

)
⇔ α1 =

1− δ
2δ (ρ2 − ρ0)

.

Thus, firm 1 incurs a penalty of x - as it pays x/2 to firm 2 and incurs an expected

loss of x/2 from possible cartel breakdown - while firm 2 experiences no net transfer

as it receives x/2 from firm 2 but incurs an expected loss of x/2 from possible cartel

breakdown. Finally, if (r1, r2) = (2, 0) then firm 1 simply transfers x to firm 2. This

strategy profile implements the optimal mechanism and is an equilibrium iff

1− δ
δ (ρ2 − ρ0)

≤ 1⇔ δ ≥ 1

1 + ρ2 − ρ0
.

Note that the smaller is ρ2 − ρ0, the more patient firms have to be.

To summarize, assume ρ2 > ρ0, ρ1 and firms are suffi ciently patient,

δ ≥ 1

1 + ρ2 − ρ0
.

Substituting the transfer function from Theorem 3 into (7), the equilibrium price is

p̂ = c+
1

2ξ′ (0)
+ x.
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The equilibrium probability of cartel breakdown is

φ (r1 + r2) =



1−δ
δ(ρ2−ρ0)

if r1 + r2 = 0

1−δ
2δ(ρ2−ρ0)

if r1 + r2 = 1

0 if r1 + r2 = 2

1−δ
δ(ρ2−ρ0)

if r1 + r2 > 2

and inter-firm payments are:

r1 r2 Payment from firm 1 to firm 2

0 0 0

1 0 x/2

1 1 0

2 0 x

The properties of this optimal equilibrium match those of the lysine strategy

profile quite closely. First, the payment scheme is linear in the number of units; a

firm transfers an amount x/2 to the other cartel member for each unit it reports

having sold. Of particular note is that payments depend only on a firm’s own sales

report. Second, the probability of cartel breakdown depends only on the aggregate

sales report, and is linear for equilibrium values:

φ (r1 + r2) =

[
1− δ

2δ (ρ2 − ρ0)

]
(2− r1 − r2) .

3.3 Proof of Theorem 3

The way in which we will proceed is to consider a less constrained problem with a

strict subset of the ICC and feasibility constraints. Once the mechanism is charac-

terized, we’ll show that the remaining ICC and feasibility constraints are satisfied.

15



Specifically, we seek to maximize

max
|t(r1,r2)|≤x

ρ0t (0, 0) + (ρ1/2) [t (1, 0) + t (0, 1)] (14)

+
(ρ2

4

)
[t (2, 0) + 2t (1, 1) + t (0, 2)]

+

(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+
(ρ1

2

)
[t (0, 1)− t (1, 0)]

+
(ρ2

2

)
[t (0, 2)− t (2, 0)]

subject to these constraints:

t (2, 0) ≥ t (1, 0) (15)

t (2, 0) ≥ t (0, 0) (16)

ηt (1, 1) + (1− η) t (1, 0) ≥ ηt (0, 1) + (1− η) t (0, 0) (17)

0 ≥ t (0, 2) + t (2, 0) (18)

0 ≥ t (1, 1) (19)

0 ≥ t (0, 1) + t (1, 0) (20)

0 ≥ t (0, 0) (21)

(15)-(17) are the ICCs ensuring that a firm does not want to under-report its sales.

η ≡ η1,1 (p, p) so that (17) is (10) when evaluated at equilibrium prices. (18)-(21) are

the feasibility constraints for when aggregate sales reports do not exceed 2.

The problem is then to choose t (0, 0) , t (1, 0) , t (0, 1) , t (2, 0) , t (1, 1) , and t (0, 2)

to maximize (14) subject to (15)-(21). Note that (14) is increasing in t (1, 1) and that

t (1, 1) enters only (17) and (19). A higher value increases the maximand and loosens

(17). Hence, (19) must be binding. Optimality then requires:

t (1, 1) = 0. (22)

Next note that (14) is increasing in t (0, 2) and that t (0, 2) enters only (18). If

x > t (0, 2) then optimality requires (18) to bind:

t (2, 0) + t (0, 2) = 0. (23)
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If x = t (0, 2) then, by (18), it follows that t (2, 0) = −x. Again, t (2, 0) + t (0, 2) = 0.

Optimality then requires (23).

Using (22)-(23), defining s = t (0, 2) = −t (2, 0) , and simplifying, we can re-state

(14) as choosing t (0, 0) , t (1, 0) , t (0, 1) , and s (all in [−x, x]) to maximize:(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ ρ0t (0, 0) + ρ1t (0, 1) + ρ2s (24)

subject to

−s ≥ t (1, 0) (25)

−s ≥ t (0, 0) (26)

(1− η) t (1, 0) ≥ ηt (0, 1) + (1− η) t (0, 0) (27)

0 ≥ t (0, 1) + t (1, 0) (28)

0 ≥ t (0, 0) (29)

Suppose (27) was not binding:

(1− η) t (1, 0) > ηt (0, 1) + (1− η) t (0, 0) .

Even if (28) is binding, we can raise t (0, 1) and lower t (1, 0) (note that (25) will still

be satisfied) so as to satisfy (28) and, because (24) is increasing in t (0, 1) , the payoff

is higher. The only caveat to the preceding argument is if t (0, 1) = x, in which case

t (0, 1) cannot be increased. But then, by (28), it follows that t (1, 0) = −x. In that

case, (27) takes the form:

(1− η) t (1, 0) ≥ ηt (0, 1) + (1− η) t (0, 0)⇔

− (1− η)x ≥ ηx+ (1− η) t (0, 0)⇔

− x

1− η ≥ t (0, 0)

which is a contradiction since t (0, 0) ≥ −x. Hence, (27) must be binding:

(1− η) t (1, 0) = ηt (0, 1) + (1− η) t (0, 0)⇔
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t (1, 0) = t (0, 0) +

(
ρ2
ρ1

)
t (0, 1) , (30)

where, using Bayes Rule,

η =
ρ2ψ (1; 2)

ρ2ψ (1; 2) + ρ1ψ (1; 1)
=

ρ2 (1/2)

ρ2 (1/2) + ρ1 (1/2)
=

ρ2
ρ1 + ρ2

.

Using (30) to substitute for t (1, 0) in (24), the problem is now to choose t (0, 0) , t (0, 1) ,

and s to maximize:(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ ρ0t (0, 0) + ρ1t (0, 1) + ρ2s (31)

subject to

−s ≥ t (0, 0) +

(
ρ2
ρ1

)
t (0, 1) (32)

−s ≥ t (0, 0) (33)

0 ≥ t (0, 0) +

(
ρ1 + ρ2
ρ1

)
t (0, 1) (34)

0 ≥ t (0, 0) (35)

If an optimum has s < 0 then, since (31) is increasing in s, it must be the case

that (32) and/or (33) are binding. By (35), if (33) binds then s ≥ 0 which is a

contradiction. Hence, if s < 0 is optimal then it implies (32) binds, which means that

t (0, 0) +

(
ρ2
ρ1

)
t (0, 1) > 0.

Since then t (0, 1) > 0, it follows that

t (0, 0) +

(
ρ1 + ρ2
ρ1

)
t (0, 1) > 0

which violates (34). Therefore, it cannot be the case that s < 0. We conclude that

an optimum must have s ≥ 0.

Suppose 0 > t (0, 1) . Since (31) is increasing in t (0, 1) then one of the constraints

must bind. It follows from 0 > t (0, 1) and (35) that (34) does not bind. When

0 > t (0, 1) , (33) binds before (32) which implies (32) does not bind. Thus, neither of
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the constraints involving t (0, 1) bind which means (31) can be increased by raising

t (0, 1) . We conclude that t (0, 1) ≥ 0 at an optimum.

To summarize the properties of an optimum derived thus far:

t (1, 0) = t (0, 0) +

(
ρ2
ρ1

)
t (0, 1)

t (1, 1) = 0

0 ≥ t (0, 0)

t (0, 1) ≥ 0

t (0, 2) = −t (2, 0) = s ≥ 0.

t (0, 1) ≥ 0 implies that if (34) holds then (35) holds which makes (35) redundant;

and if (32) holds then (33) holds which makes (33) redundant. The problem is then:

choose s, t (0, 0) , and t (0, 1) to maximize(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ ρ0t (0, 0) + ρ1t (0, 1) + ρ2s

subject to

t (0, 1)− s ≥ t (0, 0) +

(
ρ1 + ρ2
ρ1

)
t (0, 1) (36)

0 ≥ t (0, 0) +

(
ρ1 + ρ2
ρ1

)
t (0, 1) (37)

where (32) has been rearranged. First note that it is not an optimum for t (0, 1)−s >

0. In that case, (37) implies (36) is not binding. Since t (0, 1) > s implies s < x, s can

be increased which raises the objective while continuing to satisfy the constraints.

Therefore, t (0, 1)− s ≤ 0. Hence, if (36) holds then (37) holds, and, at an optimum,

s ≥ t (0, 1) .

Thus, the problem is: choose s, t (0, 0) , and t (0, 1) to maximize(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ ρ0t (0, 0) + ρ1t (0, 1) + ρ2s
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subject to

0 ≥ s+ t (0, 0) +

(
ρ2
ρ1

)
t (0, 1)

s ≥ t (0, 1) ≥ 0

0 ≥ t (0, 0)

By including the constraint s ≥ t (0, 1), we ensure that satisfaction of (36) implies (37)

holds. Suppose the first constraint does not bind at the optimum. As the objective

is increasing in s, it must be the case that s = x. Hence, the constraint becomes:

0 > x+ t (0, 0) +

(
ρ2
ρ1

)
t (0, 1) ,

but this cannot hold since t (0, 0) ≥ −x and t (0, 1) ≥ 0. We conclude that the

constraint binds:

0 = s+ t (0, 0) +

(
ρ2
ρ1

)
t (0, 1) .

Therefore, the problem is: choose s, t (0, 0) , and t (0, 1) to maximize(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ ρ0t (0, 0) + ρ1t (0, 1) + ρ2s (38)

subject to

0 = s+ t (0, 0) +

(
ρ2
ρ1

)
t (0, 1) (39)

s ≥ t (0, 1) ≥ 0 (40)

0 ≥ t (0, 0) (41)

• Assume ρ2 > ρ0, ρ1.

Suppose t (0, 0) > −x. Since we’ve shown that, at an optimum, t (0, 1) ≥ 0 then

x > s by (39). But the objective can be increased by raising s by ε > 0 (which is

possible since s < x) and lowering t (0, 0) by ε. The objective goes up by (ρ2 − ρ0) ε >

0 and, in addition, (39) still holds. Therefore, t (0, 0) = −x.
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We now have that, at an optimum, t (0, 0) = −x and we previously showed

s, t (0, 1) ≥ 0. (39) is now

0 = s− x+

(
ρ2
ρ1

)
t (0, 1) .

Use this condition to substitute for s in (38):(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
− ρ0x+ ρ1t (0, 1) + ρ2

[
x−

(
ρ2
ρ1

)
t (0, 1)

]
=

(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ (ρ2 − ρ0)x−

(
ρ22 − ρ21
ρ1

)
t (0, 1) .

Substituting for s in (40), we get

s ≥ t (0, 1)⇔ x−
(
ρ2
ρ1

)
t (0, 1) ≥ t (0, 1)⇔

(
ρ1

ρ1 + ρ2

)
x ≥ t (0, 1) .

The problem is then: choose t (0, 1) to maximize(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ (ρ2 − ρ0)x−

(
ρ22 − ρ21
ρ1

)
t (0, 1) (42)

subject to (
ρ1

ρ1 + ρ2

)
x ≥ t (0, 1) . (43)

Since ρ2 > ρ1 then (42) is decreasing in t (0, 1) . By the derived condition that

t (0, 1) ≥ 0, an optimum has t (0, 1) = 0. (Also note that since t (0, 0) = −x and

s ≤ x, (39) would be violated if t (0, 1) < 0.) From t (0, 0) = −x and t (0, 1) = 0, it

follows from (39) that s = x.

If ρ2 > ρ0, ρ1 then the solution is

t (0, 0) = −x

t (0, 1) = 0, t (1, 0) = −x

t (0, 2) = x, t (2, 0) = −x

t (1, 1) = 0

and the objective takes the value:(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ ρ0t (0, 0) + ρ1t (0, 1) + ρ2s

=

(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ (ρ2 − ρ0)x
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To complete the analysis, we need to ensure that the remaining ICC and feasi-

bility constraints are satisfied. For that purpose, we extend the transfer function to

encompass sales reports that sum to more than two.

t (0, 0) = −x (44)

t (0, 1) = 0, t (1, 0) = −x,

t (0, 2) = x, t (2, 0) = −x

t (1, 1) = 0

t (r1, r2) = −x if r1 + r2 > 2

Notice that all feasibility constraints are satisfied.

Referring back to the complete set of ICCs, the ones that we still need to verify

are satisfied are, for all p1,8

η1,1 (p1, p̂) t (1, 1) +
(
1− η1,1 (p1, p̂)

)
t (1, 0) (45)

≥ η1,1 (p1, p̂) t (2, 1) +
(
1− η1,1 (p1, p̂)

)
t (2, 0)

η1,1 (p1, p̂) t (1, 1) +
(
1− η1,1 (p1, p̂)

)
t (1, 0) (46)

≥ η1,1 (p1, p̂) t (0, 1) +
(
1− η1,1 (p1, p̂)

)
t (0, 0)

η0,2 (p1, p̂) t (0, 2) + η0,1 (p1, p̂) t (0, 1) (47)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (0, 0)

≥ η0,2 (p1, p̂) t (1, 2) + η0,1 (p1, p̂) t (1, 1)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (1, 0)

η0,2 (p1, p̂) t (0, 2) + η0,1 (p1, p̂) t (0, 1) (48)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (0, 0)

≥ η0,2 (p1, p̂) t (2, 2) + η0,1 (p1, p̂) t (2, 1)

+
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
t (2, 0)

8Actually, we have already verified that (46) holds for p1 = p̂.

22



Substituting (44) into (45),

−
(
1− η1,1 (p1, p̂)

)
x ≥ −η1,1 (p1, p̂)x−

(
1− η1,1 (p1, p̂)

)
x⇔ η1,1 (p1, p̂) ≥ 0,

which holds. Next consider (46):

−
(
1− η1,1 (p1, p̂)

)
x ≥ −

(
1− η1,1 (p1, p̂)

)
x.

Next consider (47):

η0,2 (p1, p̂)x−
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
x ≥ −η0,2 (p1, p̂)x−

(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
x⇔

η0,2 (p1, p̂) ≥ −η0,2 (p1, p̂) .

Finally, consider (48):

η0,2 (p1, p̂)x−
(
1− η0,2 (p1, p̂)− η0,1 (p1, p̂)

)
x ≥ −x⇔ 2η0,2 (p1, p̂) + η0,1 (p1, p̂) ≥ 0.

We conclude that if ρ2 > ρ0, ρ1 then (44) is an optimal mechanism.

• Assume ρ0 > ρ1, ρ2.

Return to (38) with constraints (39)-(41). Suppose t (0, 0) = 0. Since we’ve already

shown that, at an optimum, s, t (0, 1) ≥ 0, then (39) implies s = 0 = t (0, 1). Let

us see if there is a better solution. Thus, suppose t (0, 0) < 0. t (0, 0) < 0 and (39)

imply t (0, 1) > 0 and/or s > 0. If t (0, 1) > 0 then (40) implies s > 0. Hence, at an

optimum, if t (0, 0) < 0 then s > 0. If (40) is not binding - specifically, if s > t (0, 1) -

then (38) can be increased by reducing s by ε and raising t (0, 0) by ε; the objective

goes up by (ρ0 − ρ2) ε > 0 and (39) still holds. Given then that s = t (0, 1), the

problem is to choose t (0, 0) and s to maximize(
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ ρ0t (0, 0) + (ρ1 + ρ2) s

subject to

0 = t (0, 0) +

(
ρ1 + ρ2
ρ1

)
s.
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Substituting this constraint into the objective, the problem is to choose t (0, 0) and s

to maximize (
2 (1− ρ0)− ρ1

4ξ′ (0)

)
+ (ρ1 + ρ2)

(
ρ1 − ρ0
ρ1

)
s (49)

subject to

0 = t (0, 0) +

(
ρ1 + ρ2
ρ1

)
s. (50)

Since ρ1 − ρ0 < 0 then (49) is decreasing in s. Given (50), t (0, 0) should be set as

high as possible, which implies t (0, 0) = 0 and, therefore, s = 0. The best solution is

then:

t (0, 0) = 0, t (0, 1) = 0, t (1, 0) = 0, t (0, 2) = 0, t (2, 0) = 0, t (1, 1) = 0.

Hence, if ρ0 > ρ1, ρ2 then no collusion can be sustained.
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